Macaulay2 » Documentation
Packages » Macaulay2Doc » The Macaulay2 language » Type » Ring » ring
next | previous | forward | backward | up | index | toc

ring -- get the associated ring of an object

Description

For example, ring elements, matrices, ideals, modules, chain complexes, varieties, coherent sheaves, etc., all have a base ring naturally associated to them.
i1 : R = ZZ/101[x,y,z];
i2 : ring x

o2 = R

o2 : PolynomialRing
i3 : M = matrix {{2*x, x+y},{y^3, z*y}};

             2      2
o3 : Matrix R  <-- R
i4 : ring M

o4 = R

o4 : PolynomialRing
i5 : S = QQ[x,y,z];
i6 : ring x

o6 = S

o6 : PolynomialRing
i7 : I = ideal (x*y, y*z);

o7 : Ideal of S
i8 : ring I

o8 = S

o8 : PolynomialRing

See also

Ways to use ring:

  • ring(CC)
  • ring(GroebnerBasis)
  • ring(Ideal)
  • ring(Matrix)
  • ring(Module)
  • ring(MutableMatrix)
  • ring(Number)
  • ring(RingElement)
  • ring(RR)
  • ring(RRi)
  • ring(Vector)
  • ring(Constant) (missing documentation)

For the programmer

The object ring is a method function.


The source of this document is in Macaulay2Doc/functions/ring-doc.m2:33:0.