Macaulay2 » Documentation
Packages » submatrix > submatrixByDegrees
next | previous | forward | backward | up | index | toc

submatrixByDegrees -- submatrix consisting of rows and columns in an interval or box of degrees

Synopsis

Description

If only one degree (as integer, or list of integers) is given for targetBox or sourceBox, then only rows or columns that match that exact degree are used.

i1 : R = QQ[a..d];
i2 : I = ideal"a2b-c3,abc-d3,ac2-bd2-cd2,abcd-c4"

             2     3           3     2      2      2     4
o2 = ideal (a b - c , a*b*c - d , a*c  - b*d  - c*d , - c  + a*b*c*d)

o2 : Ideal of R
i3 : C = res I;
i4 : m = C.dd_2

o4 = {3} | ac2-bd2-cd2 0           -abc+d3 0        -a3c+a2cd          
     {3} | 0           ac2-bd2-cd2 a2b-c3  -acd+cd2 a4-a3d-acd2+cd3    
     {3} | -a2b+c3     -abc+d3     0       abd-bd2  -a2c2+ac2d-acd2+cd3
     {4} | 0           0           0       b2+bc-cd a3-bcd-c2d-cd2     
     ------------------------------------------------------------------------
     -a3c+a2cd                         
     a4-a3d+a2cd-3acd2-ad3+2cd3+d4     
     -a2c2-a2bd+ac2d+2abd2-acd2-bd3+cd3
     a3-ab2+b2d+acd-c2d-2cd2-d3        
     ------------------------------------------------------------------------
     -a3c+a2cd                                
     a4-a3d+a2cd-3acd2-ad3+2cd3+d4            
     -a2c2-a2bd+ac2d+2abd2-acd2-ad3-bd3+cd3+d4
     a3-ab2+ac2+b2d+acd-c2d-bd2-3cd2-d3       
     ------------------------------------------------------------------------
     -a2bc+a2cd-acd2+d4                        a2cd-acd2            |
     a3b-a3d+abcd+ac2d+a2d2-2bcd2-c2d2-bd3-cd3 -a3d+ac2d+a2d2-c2d2  |
     -abc2-ab2d-abcd+ac2d+b2d2-c2d2+cd3+d4     -abcd+ac2d+bcd2-c2d2 |
     a2b-b3-b2c+bc2-a2d+bcd                    -b2c+c3-a2d+c2d      |

             4      9
o4 : Matrix R  <-- R
i5 : submatrixByDegrees(m, 3, 6)

o5 = {3} | ac2-bd2-cd2 0           -abc+d3 0        |
     {3} | 0           ac2-bd2-cd2 a2b-c3  -acd+cd2 |
     {3} | -a2b+c3     -abc+d3     0       abd-bd2  |

             3      4
o5 : Matrix R  <-- R
i6 : submatrixByDegrees(m, (3,3), (6,7))

o6 = {3} | ac2-bd2-cd2 0           -abc+d3 0        -a3c+a2cd          
     {3} | 0           ac2-bd2-cd2 a2b-c3  -acd+cd2 a4-a3d-acd2+cd3    
     {3} | -a2b+c3     -abc+d3     0       abd-bd2  -a2c2+ac2d-acd2+cd3
     ------------------------------------------------------------------------
     -a3c+a2cd                         
     a4-a3d+a2cd-3acd2-ad3+2cd3+d4     
     -a2c2-a2bd+ac2d+2abd2-acd2-bd3+cd3
     ------------------------------------------------------------------------
     -a3c+a2cd                                
     a4-a3d+a2cd-3acd2-ad3+2cd3+d4            
     -a2c2-a2bd+ac2d+2abd2-acd2-ad3-bd3+cd3+d4
     ------------------------------------------------------------------------
     -a2bc+a2cd-acd2+d4                        a2cd-acd2            |
     a3b-a3d+abcd+ac2d+a2d2-2bcd2-c2d2-bd3-cd3 -a3d+ac2d+a2d2-c2d2  |
     -abc2-ab2d-abcd+ac2d+b2d2-c2d2+cd3+d4     -abcd+ac2d+bcd2-c2d2 |

             3      9
o6 : Matrix R  <-- R
i7 : submatrixByDegrees(m, (4,4), (7,7))

o7 = {4} | a3-bcd-c2d-cd2 a3-ab2+b2d+acd-c2d-2cd2-d3
     ------------------------------------------------------------------------
     a3-ab2+ac2+b2d+acd-c2d-bd2-3cd2-d3 a2b-b3-b2c+bc2-a2d+bcd
     ------------------------------------------------------------------------
     -b2c+c3-a2d+c2d |

             1      5
o7 : Matrix R  <-- R

For multidegrees, the interval is a box.

i8 : S = QQ[a..d, Degrees=>{2:{1,0},2:{0,1}}];
i9 : I = ideal(a*d^4, b^3, a^2*d^2, a*b*c*d^3)

               4   3   2 2         3
o9 = ideal (a*d , b , a d , a*b*c*d )

o9 : Ideal of S
i10 : C = res I

       1      4      6      4      1
o10 = S  <-- S  <-- S  <-- S  <-- S  <-- 0
                                          
      0      1      2      3      4      5

o10 : ChainComplex
i11 : m = C.dd_2

o11 = {3, 0} | 0   -a2d2 0    0   -acd3 -ad4 |
      {2, 2} | -d2 b3    -bcd 0   0     0    |
      {1, 4} | a   0     0    -bc 0     b3   |
      {2, 4} | 0   0     a    d   b2    0    |

              4      6
o11 : Matrix S  <-- S
i12 : degrees target m

o12 = {{3, 0}, {2, 2}, {1, 4}, {2, 4}}

o12 : List
i13 : degrees source m

o13 = {{2, 4}, {5, 2}, {3, 4}, {2, 5}, {4, 4}, {4, 4}}

o13 : List
i14 : submatrixByDegrees(C.dd_2, ({2,2},{2,4}), ({2,2},{5,4}))

o14 = {2, 2} | -d2 b3 -bcd 0  0 |
      {2, 4} | 0   0  a    b2 0 |

              2      5
o14 : Matrix S  <-- S

Caveat

The degrees are taken from the target and source free modules, not from the matrix entries themselves.

See also

Ways to use submatrixByDegrees:

For the programmer

The object submatrixByDegrees is a method function.