isConnected M
A matroid M is called connected if for every pair of distinct elements f, g in M, there is a circuit containing both of them. This turns out to be equivalent to saying that there does not exist an element e in M with rank({e}) + rank(M - {e}) = rank(M) (note that <= always holds by submodularity of the rank function).
This method checks connectivity using the first definition above. The second definition generalizes to higher connectivity - cf. is3Connected. In the language of higher connectivity, a matroid is connected (in the sense of the two definitions above) if and only if it is 2-connected, i.e. has no 1-separation.
To obtain the connected components of a matroid, use components.
|
|
|
|