Find the minimal primes of an ideal in a polynomial ring over a prime field, or a quotient ring of that. These are the geometric components of the corresponding algebraic set.
Multiple strategies are implemented via hooks. In many cases the default Birational strategy is much faster, although there are cases when the Legacy strategy does better. For a monomial ideal, a more efficient algorithm is used instead.
minprimes and decompose are synonyms for minimalPrimes.
Only works for ideals in (commutative) polynomial rings or quotients of polynomial rings over a prime field, might have bugs in small characteristic and larger degree (although, many of these cases are caught correctly).
This documentation describes version 0.10 of MinimalPrimes.
The source code from which this documentation is derived is in the file MinimalPrimes.m2. The auxiliary files accompanying it are in the directory MinimalPrimes/.
The object MinimalPrimes is a package.