next | previous | forward | backward | up | index | toc

# MultIdeal -- Computes the multiplier ideal of a given number.

## Synopsis

• Usage:
MultIdeal(F,E,jn)
• Inputs:
• F, Matrix
• E, Matrix
• jn, Real number
• Optional inputs:
• MaxIterations => ..., default value 10000, Limits the number of iterations of the Unloading algorithm.
• Outputs:
• The multiplier ideal associated to jn.

## Description

Starting form the divisor encoded as a matrix of dimensions 1 x m, the intersection matrix as presented in [AAD14] and a real number, it returns the multiplier ideal associated to this number.
 i1 : E = matrix({{ -5, 0, 1, 0, 1}, { 0, -2, 1, 0, 0}, { 1, 1, -1, 0, 0}, { 0, 0, 0, -2, 1}, { 1, 0, 0, 1, -1}}) o1 = | -5 0 1 0 1 | | 0 -2 1 0 0 | | 1 1 -1 0 0 | | 0 0 0 -2 1 | | 1 0 0 1 -1 | 5 5 o1 : Matrix ZZ <-- ZZ i2 : F = matrix({{4,5,10,5,10}}) o2 = | 4 5 10 5 10 | 1 5 o2 : Matrix ZZ <-- ZZ i3 : MultIdeal(F,E,1 / 2) o3 = | 1 1 2 1 2 | o3 : MutableMatrix

## For the programmer

The object MultIdeal is .