i2 : X = PP_K^({1,1,2},{3,2,3});
o2 : ProjectiveVariety, 4-dimensional subvariety of PP^3 x PP^2 x PP^9
i3 : time p := point X
-- used 0.0130905s (cpu); 0.0127895s (thread); 0s (gc)
o3 = point of coordinates ([421369, 39917, -212481, 1],[-128795, -176966, 1],[3870, -390108, -496127, -308581, 46649, 164926, -446111, 48038, 415309, 1])
o3 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
i4 : Y = random({2,1,2},X);
o4 : ProjectiveVariety, hypersurface in PP^3 x PP^2 x PP^9
i5 : time q = point Y
-- used 1.23368s (cpu); 0.71978s (thread); 0s (gc)
o5 = q
o5 : ProjectiveVariety, a point in PP^3 x PP^2 x PP^9
i6 : assert(isSubset(p,X) and isSubset(q,Y))
The list of homogeneous coordinates can be obtained with the operator |-.