A differential operator on the ring $R = \mathbb{K}[x_1,\dots,x_n]$ can be thought of as $k$-vectors of polynomials in $S = R[dx_1, \dotsc, dx_n]$, with coefficients in $R$, and monomials in variables $dx_1, \dots, dx_n$, where $dx_i$ corresponds to the partial derivative with respect to $x_i$. Hence a differential operator is an element of the free module $S^k$. These operators form an $R$-vector space, and operate on elements of $R^k$. The result of the operation lies in $R$, and is equal to the sum of the entrywise operations.
The ring $S$ can be obtained from $R$ using diffOpRing.
|
|
|
|
|
|
|
|
|