i3 : (intCl,normRees)=intclMonIdeal(allComputations=>true,I)
3 2 2 3
o3 = (ideal (y , x*y , x y, x ),
------------------------------------------------------------------------
MonomialSubalgebra{cache => CacheTable{...1...} })
3 2 2 3
generators => {y, y a, x, x*y a, x y*a, x a}
ZZ
ring => --[x..y, a]
37
o3 : Sequence
|
i4 : normRees.cache#"cone"
o4 = RationalCone{"cgr" => | 0 | }
| 4 |
"equ" => | 0 |
| 3 |
"gen" => | 0 1 0 |
| 0 3 1 |
| 1 0 0 |
| 1 2 1 |
| 2 1 1 |
| 3 0 1 |
"inv" => HashTable{"" => (1, 1, 1) }
"class group" => 1 : (1)
"degree 1 elements" => 6
"dim max subspace" => 0
"embedding dim" => 3
"external index" => 1
"graded" => true
"grading denom" => 1
"grading" => (1, 1, -2)
"hilbert basis elements" => 6
"hilbert quasipolynomial denom" => 1
"hilbert series denom" => (1, 1, 1)
"hilbert series num" => (1, 3)
"ideal multiplicity" => 9
"inhomogeneous" => false
"integrally closed" => true
"internal index" => 1
"multiplicity denom" => 1
"multiplicity" => 4
"number extreme rays" => 4
"number support hyperplanes" => 4
"primary" => true
"rank" => 3
"size triangulation" => 4
"sum dets" => 4
"sup" => | 0 0 1 |
| 0 1 0 |
| 1 0 0 |
| 1 1 -3 |
o4 : RationalCone
|