Macaulay2 » Documentation
Packages » NumericalSemigroups :: mu
next | previous | forward | backward | up | index | toc

mu -- Compute the point representing a semigroup in the Kunz cone

Synopsis

Description

The apery set A of a semigroup s with multiplicity m has the form A_i = i+ mu_i*m. The point with coordinates mu(L) represents semigroup L in the Kunz cone P_m.

i1 : m = 3

o1 = 3
i2 : L = {3,7}

o2 = {3, 7}

o2 : List
i3 : a = aperySet L

o3 = {7, 14}

o3 : List
i4 : b = mu L

o4 = {2, 4}

o4 : List
i5 : apply (#b, i -> (i+1)+(b_i*m))

o5 = {7, 14}

o5 : List

See also

Ways to use mu:

For the programmer

The object mu is a method function.