Description
E and
F must be vector bundles over the same fan. Two equivariant vector bundles in Klyachko's description are isomorphic if there exists a simultaneous isomorphism for the filtered vector spaces of all rays. The method then returns whether the bundles are isomorphic.
i1 : HF = hirzebruchFan 2
o1 = {ambient dimension => 2 }
number of generating cones => 4
number of rays => 4
top dimension of the cones => 2
o1 : Fan
|
i2 : E = exteriorPower(2, cotangentBundle HF)
o2 = {dimension of the variety => 2 }
number of affine charts => 4
number of rays => 4
rank of the vector bundle => 1
o2 : ToricVectorBundleKlyachko
|
i3 : F = weilToCartier({-1,-1,-1,-1},HF)
o3 = {dimension of the variety => 2 }
number of affine charts => 4
number of rays => 4
rank of the vector bundle => 1
o3 : ToricVectorBundleKlyachko
|
i4 : areIsomorphic(E,F)
o4 = true
|
To obtain the isomorphism, if two bundles are isomorphic use
isomorphism.