Description
L must be a list of weights, exactly one for each ray of the fan. Then the Cartier index is the smallest strictly positive natural number $N$ such that $N$ times the Weil divisor is Cartier. If the Weil divisor defined by these weights is not
QQ-Cartier, then $N$ would be infinity. In this case
cartierIndex returns an error. Otherwise it returns $N$.
i1 : F = fan posHull matrix {{1,5},{5,1}}
o1 = {ambient dimension => 2 }
number of generating cones => 1
number of rays => 2
top dimension of the cones => 2
o1 : Fan
|
i2 : L = {2,2}
o2 = {2, 2}
o2 : List
|
i3 : cartierIndex(L,F)
o3 = 3
|
If we change the Weil divisor we get a different Cartier index:
i4 : L = {3,3}
o4 = {3, 3}
o4 : List
|
i5 : cartierIndex(L,F)
o5 = 2
|