may well encode a toric reflexive sheaf that is not locally free.
permits to check whether a toric reflexive sheaf is locally free, that is, locally a direct sum of invertible sheaves, that is, a vector bundle.
.
i1 : A3 = fan coneFromVData matrix {{1,0,0},{0,1,0},{0,0,1}};
|
i2 : filtMat = apply( { {{1,0},{0,1}}, {{0,1},{1,0}}, {{1,1},{1,0}} }, matrix);
|
i3 : filtStep = apply( { {{0,1}}, {{0,1}}, {{0,1}} }, matrix);
|
i4 : E = toricVectorBundle (2,A3,filtMat,filtStep);
|
i5 : details E
o5 = HashTable{| 0 | => (| 1 0 |, | 0 1 |)}
| 0 | | 0 1 |
| 1 |
| 0 | => (| 0 1 |, | 0 1 |)
| 1 | | 1 0 |
| 0 |
| 1 | => (| 1 1 |, | 0 1 |)
| 0 | | 1 0 |
| 0 |
o5 : HashTable
|
i6 : isLocallyFree E
o6 = false
|
i7 : P112 = ccRefinement transpose matrix {{1,0},{0,1},{-1,-2}};
|
i8 : D = {1,0,0};
|
i9 : L = toricVectorBundle(1, P112, toList(3: matrix{{1_QQ}}), apply( D, i-> matrix{{-i}}));
|
i10 : details L
o10 = HashTable{| -1 | => (| 1 |, | -1 |)}
| -2 |
| 0 | => (| 1 |, 0)
| 1 |
| 1 | => (| 1 |, 0)
| 0 |
o10 : HashTable
|
i11 : isLocallyWeil L
o11 = true
|
i12 : toricChernCharacter L
o12 = HashTable{| -1 0 | => {| 1 |} }
| -2 1 | | 0 |
| 1 -1 | => {| 0 |}
| 0 -2 | | 1/2 |
| 1 0 | => {0}
| 0 1 |
o12 : HashTable
|
i13 : isLocallyFree L
o13 = false
|