isSquarefreePseudomonomialIdeal -- determine if an ideal is a square free pseudomonomial ideal
Synopsis
-
- Usage:
isSquarefreePseudomonomialIdeal(I)
-
Inputs:
-
Outputs:
Description
An ideal is a square free pseudomonomial ideal if its generators are square free pseudomonomials. A square free pseudomonomial is a polynomial of the form P=z1*z2*...*zk such that zi is either xi or xi-1 and a variable can only appear once in P. For example, x1*x3, x1*(x2-1)*(x3-1) are square free pseudomonomial and x2*x3^2, x1*(x1-1)*(x3-1) are not.
i1 : R=ZZ/2[x1,x2,x3,x4,x5];
|
i2 : I = ideal(x1*x2,x3*x4,x5);
o2 : Ideal of R
|
i3 : isSquarefreePseudomonomialIdeal(I)
o3 = true
|
i4 : R=ZZ/2[x1,x2];
|
i5 : I = ideal(x1*(x2-1),(x1-1)*(x2-1),x1*x2,(x1-1)*x2);
o5 : Ideal of R
|
i6 : isSquarefreePseudomonomialIdeal(I)
o6 = true
|
i7 : R=ZZ/3[x1,x2];
|
i8 : I = ideal(x1,x2-1);
o8 : Ideal of R
|
i9 : isSquarefreePseudomonomialIdeal(I)
o9 = true
|
i10 : R=QQ[x1,x2,x3,x4,x5];
|
i11 : I = ideal(x1*(x1-1),(x3-1)*x4,x5);
o11 : Ideal of R
|
i12 : not isSquarefreePseudomonomialIdeal(I)
o12 = true
|
i13 : R=QQ[x1,x2,x3,x4,x5];
|
i14 : I = ideal(x1*(x5-1),(x3-1)*x4^2,x5);
o14 : Ideal of R
|
i15 : isSquarefreePseudomonomialIdeal(I)
o15 = false
|
Caveat
The algorithm disregards the base field. So, ideal(-x1) is a square free pseudomonomial ideal in F[x1] for F=ZZ,ZZ/p,QQ, whereas ideal(-x1) is not a monomial ideal when F=ZZ.
Ways to use isSquarefreePseudomonomialIdeal:
-
isSquarefreePseudomonomialIdeal(Ideal)