Macaulay2 » Documentation
Packages » RandomComplexes :: testTimeForLLLonSyzygies
next | previous | forward | backward | up | index | toc

testTimeForLLLonSyzygies -- test timing for LLL on syzygies

Description

We randomly choose an $r \times\ n$ matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.

i1 : setRandomSeed "nice example 2";
 -- setting random seed to 12638458417381289481402307077
i2 : r=10,n=20

o2 = (10, 20)

o2 : Sequence
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11)

o3 = ({5, 2.91596e52, 9}, .00199814, .0010014)

o3 : Sequence
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100)

o4 = ({50, 2.30853e454, 98}, .00624326, .0454716)

o4 : Sequence
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2})

o5 = {{.00819188, .0164482}, {.00599554, .00499017}, {.00668845, .0089523},
     ------------------------------------------------------------------------
     {.00538008, .0129797}, {.00599627, .0170018}, {.00699464, .016964},
     ------------------------------------------------------------------------
     {.00600258, .0114555}, {.00696708, .00999094}, {.00500848, .00699082},
     ------------------------------------------------------------------------
     {.00799756, .0109407}}

o5 : List
i6 : 1/10*sum(L,t->t_0)

o6 = .006522254699999985

o6 : RR (of precision 53)
i7 : 1/10*sum(L,t->t_1)

o7 = .01167141520000006

o7 : RR (of precision 53)

Ways to use testTimeForLLLonSyzygies:

  • testTimeForLLLonSyzygies(ZZ,ZZ)

For the programmer

The object testTimeForLLLonSyzygies is a method function with options.


The source of this document is in RandomComplexes.m2:492:0.