Let $I\subset S$ be a homogeneous ideal, with $d=\dim S/I$, and let $I=\displaystyle\bigcap_{j=1}^r Q_j$ be the minimal primary decomposition of $I$. For all $1\leq j\leq r$, let $P_j = \sqrt{Q_j}$ be the radical of $Q_j$. For all $-1\leq i\leq d$, the $i$th filter ideal of $I$ is $$I^{<i>} = \bigcap_{\dim S/{P_j}>i} Q_{j},$$ where $I^{<-1>}=I$ and $I^{<d>}=S$.
|
|
|
|
The object filterIdeal is a method function.