chern A
i1 : base(3, Bundle => (A,2,a), Bundle => (B,3,b)) o1 = a variety o1 : an abstract variety of dimension 3
i2 : chern B o2 = 1 + b + b + b 1 2 3 o2 : QQ[a ..a , b ..b ] 1 2 1 3
i3 : chern(-A) 2 3 o3 = 1 - a + (a - a ) + (- a + 2a a ) 1 1 2 1 1 2 o3 : QQ[a ..a , b ..b ] 1 2 1 3
The next example gives the total Chern class of a twist of a rank 2 vector bundle on the projective plane.
i4 : pt = base(n,p,q) o4 = pt o4 : an abstract variety of dimension 0
i5 : P2 = abstractProjectiveSpace'_2 pt o5 = P2 o5 : a flag bundle with subquotient ranks {2, 1}
i6 : E = abstractSheaf(P2, Rank=>2, ChernClass=>1+p*h+q*h^2) o6 = E o6 : an abstract sheaf of rank 2 on P2
i7 : chern E(n*h) 2 2 o7 = 1 + (2n + p)h + (n + n*p + q)h QQ[n, p..q][H ..H , h] 1,1 1,2 o7 : ------------------------------------ (- H - h, - H - H h, -H h) 1,1 1,2 1,1 1,2