Macaulay2 » Documentation
Packages » SchurRings :: centralizerSize
next | previous | forward | backward | up | index | toc

centralizerSize -- Size of the centralizer of a permutation



rho is a list representing the cycle type of some permutation: the i-th entry in rho is the number of cycles of length i of the permutation. The output of the function centralizerSize is the size of the centralizer in the symmetric group of any permutation of cycle type rho. The cycle type rho corresponds to a partition lambda, in which case centralizerSize(rho) is also the value of the square norm of the symmetric function p_{lambda}.

i1 : centralizerSize{1,1,1}

o1 = 6
i2 : R = symmetricRing(QQ,6);
i3 : u = p_1 * p_2 * p_3;
i4 : scalarProduct(u,u)

o4 = 6

o4 : QQ

Ways to use centralizerSize :

For the programmer

The object centralizerSize is a method function.