The method computes the character of the representation obtained by applying the Schur functor S_{\lambda} to the representation with character g, where \lambda is a partition.
i1 : R = symmetricRing(QQ,3);
i2 : S = schurRing(QQ,q,3);
i3 : toE plethysm({2,1},e_1*e_2-e_3)
4 4 2 2 3 3 2 2 3
o3 = e e + e e e - 4e e e - e e - e e + 7e e e - 3e
1 2 1 2 3 1 2 3 2 3 1 3 1 2 3 3
o3 : R
i4 : plethysm({2,1,1},q_{1,1})
o4 = q
3,3,2
o4 : S
i5 : T = schurRing(S,t,4,GroupActing => "Sn");
i6 : plethysm({1,1},q_1*t_{3,1})
o6 = q t + q t + q t + q t
1,1 4 1,1 3,1 1,1 2,2 2 2,1,1
o6 : T