i1 : M = (matrix{{2,3,4,5},{0,2,1,0}},matrix{{1,-1,0,2,3},{-2,0,-7,-1,0}},matrix{{-1,0,6},{-2,1,3}})
o1 = (| 2 3 4 5 |, | 1 -1 0 2 3 |, | -1 0 6 |)
| 0 2 1 0 | | -2 0 -7 -1 0 | | -2 1 3 |
o1 : Sequence
|
i2 : genericLaurentPolynomials M
5 4 3 2 2 3 2 -1 -2 -7
o2 = (a x + a x x + a x x + a x , b x + b x x + b x x + b x +
3 1 2 1 2 1 1 2 0 1 4 1 3 1 2 2 1 2 1 2
------------------------------------------------------------------------
-1 6 3 -1 -2
b x , c x x + c x + c x x )
0 1 2 1 2 1 2 0 1 2
o2 : Sequence
|
i3 : genericLaurentPolynomials (2,3,1)
2 2 3 2 2 3
o3 = (a x + a x x + a x + a x + a x + a , b x + b x x + b x x + b x
5 1 4 1 2 2 2 3 1 1 2 0 9 1 8 1 2 6 1 2 3 2
------------------------------------------------------------------------
2 2
+ b x + b x x + b x + b x + b x + b , c x + c x + c )
7 1 5 1 2 2 2 4 1 1 2 0 2 1 1 2 0
o3 : Sequence
|