Macaulay2 » Documentation
Packages » SpechtModule :: multinomial
next | previous | forward | backward | up | index | toc

multinomial -- a formula for the multinomial coefficient

Synopsis

Description

The multinomial coefficient is a generalization of the binomial coefficient. Given a list of number $k_1,\ldots,k_l$, the multinomial coefficient is $n!/(k_1!\ldots,k_l!)$ where $n = \sum k_i$. The multinomial coefficient is calculated because it gives the numbers of tabloids for a given partition.

The list of numbers used to calculate the multinomial can be given as a list, a partition or a tally. This last option was added to optimize this calculation.

i1 : p = new Partition from {2,2}

o1 = Partition{2, 2}

o1 : Partition
i2 : tabloids p

o2 = {| 0 1 |, | 0 2 |, | 0 3 |, | 1 2 |, | 1 3 |, | 2 3 |}
      | 2 3 |  | 1 3 |  | 1 2 |  | 0 3 |  | 0 2 |  | 0 1 |

o2 : TableauList
i3 : multinomial {2,2}

o3 = 6
i4 : multinomial tally {2,2}

o4 = 6

Ways to use multinomial:

For the programmer

The object multinomial is a method function.