Macaulay2 » Documentation
Packages » SpechtModule :: permutePolynomial
next | previous | forward | backward | up | index | toc

permutePolynomial -- permutes a RingElement or a PolynomialExpression of RingElements

Synopsis

Description

This method applies permutations to polynomial ring elements by permuting the variables. Therefore the size of the permutation must be equal to the number of generators of the ring of the elements.

i1 : R = QQ[x_0..x_4]

o1 = R

o1 : PolynomialRing
i2 : l = {1,0,2,3,4}

o2 = {1, 0, 2, 3, 4}

o2 : List
i3 : f = x_1*x_2*x_3

o3 = x x x
      1 2 3

o3 : R
i4 : permutePolynomial(l,f)

o4 = x x x
      0 2 3

o4 : R

This method can also permute polynomial expressions that are constructed from ring elements either by sums, products or powers.

i5 : ex = factor(x_1*x_2*x_3)+factor(x_1*x_3*x_4)

o5 = (x )(x )(x ) + (x )(x )(x )
       3   2   1      4   3   1

o5 : Expression of class Sum
i6 : permutePolynomial(l,ex)

o6 = (x )(x )(x ) + (x )(x )(x )
       3   2   0      4   3   0

o6 : Expression of class Sum

Ways to use permutePolynomial:

For the programmer

The object permutePolynomial is a method function.