This method checks whether a graph is simple: does not contain loops or multiple edges. Note that since graph, digraph and bigraph do not allow multiple edges, a graph of class MixedGraph can only have multiple edges of different types.
In the following example, there are no loops or multiple edges.
i1 : U = graph{{1,2},{2,3},{3,4}}
o1 = Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o1 : Graph
|
i2 : D = digraph{{2,5}}
o2 = Digraph{2 => {5}}
5 => {}
o2 : Digraph
|
i3 : B = bigraph{{5,6}}
o3 = Bigraph{5 => {6}}
6 => {5}
o3 : Bigraph
|
i4 : G = mixedGraph(U,D,B)
o4 = MixedGraph{Bigraph => Bigraph{5 => {6}}}
6 => {5}
Digraph => Digraph{2 => {5}}
5 => {}
Graph => Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o4 : MixedGraph
|
i5 : isSimple G
o5 = true
|
i6 : U = graph{{1,2},{2,3},{3,4}}
o6 = Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o6 : Graph
|
i7 : D = digraph{{1,2},{2,5}}
o7 = Digraph{1 => {2}}
2 => {5}
5 => {}
o7 : Digraph
|
i8 : B = bigraph{{5,6}}
o8 = Bigraph{5 => {6}}
6 => {5}
o8 : Bigraph
|
i9 : G = mixedGraph(U,D,B)
o9 = MixedGraph{Bigraph => Bigraph{5 => {6}}}
6 => {5}
Digraph => Digraph{1 => {2}}
2 => {5}
5 => {}
Graph => Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o9 : MixedGraph
|
i10 : isSimple G
o10 = false
|
i11 : U = graph{{1,2},{2,3},{3,4}}
o11 = Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o11 : Graph
|
i12 : D = digraph{{2,5}}
o12 = Digraph{2 => {5}}
5 => {}
o12 : Digraph
|
i13 : B = bigraph{{5,6},{5,5}}
o13 = Bigraph{5 => {5, 6}}
6 => {5}
o13 : Bigraph
|
i14 : G = mixedGraph(U,D,B)
o14 = MixedGraph{Bigraph => Bigraph{5 => {5, 6}}}
6 => {5}
Digraph => Digraph{2 => {5}}
5 => {}
Graph => Graph{1 => {2} }
2 => {1, 3}
3 => {2, 4}
4 => {3}
o14 : MixedGraph
|
i15 : isSimple G
o15 = false
|