a sequence, ($T$ ,$f$) where $T = R \otimes_L K$ is the base-changed ring, $f:R\to T$ is the ring map $R\otimes_L L\to R\otimes_L K$ induced from $L\to K$.
Description
i1 : R = GF(8)[x,y,z]/(x*y-z^2)
o1 = R
o1 : QuotientRing
i2 : K = GF(64)
o2 = K
o2 : GaloisField
i3 : (T,f) = fieldBaseChange(R,K)
5 4 2
o3 = (T, map (T, R, {x, y, z, a + a + a + 1}))
o3 : Sequence
i4 : describe T
K[x..z]
o4 = --------
2
x*y + z
i5 : describe f
5 4 2
o5 = map (T, R, {x, y, z, a + a + a + 1})