Macaulay2 » Documentation
Packages » TestIdeals :: frobenius
next | previous | forward | backward | up | index | toc

frobenius -- compute a Frobenius power of an ideal or a matrix

Description

Given an ideal $I$ in a ring of characteristic $p > 0$ and a nonnegative integer $e$, frobenius(e, I) or frobenius^e(I) returns the $p^e$-th Frobenius power $I^{[p^e]}$, that is, the ideal generated by all powers $f^{ p^e}$, with $f \in\ I$ (see frobeniusPower).

i1 : R = ZZ/3[x,y];
i2 : I = ideal(x^2, x*y, y^2);

o2 : Ideal of R
i3 : frobenius(2, I)

             18   9 9   18
o3 = ideal (x  , x y , y  )

o3 : Ideal of R
i4 : frobenius^2(I)

             18   9 9   18
o4 = ideal (x  , x y , y  )

o4 : Ideal of R
i5 : frobeniusPower(3^2, I)

             18   9 9   18
o5 = ideal (x  , x y , y  )

o5 : Ideal of R

If $e$ is negative, then frobenius(e, I) or frobenius^e(I) computes a Frobenius root, as defined by Blickle, Mustata, and Smith (see frobeniusRoot).

i6 : R = ZZ/5[x,y,z,w];
i7 : I = ideal(x^27*y^10 + 3*z^28 - x^2*y^15*z^35, x^17*w^30 + 2*x^10*y^10*z^35, x*z^50);

o7 : Ideal of R
i8 : frobenius(-1, I)

             5   5 2   3 6
o8 = ideal (z , x y , x w )

o8 : Ideal of R
i9 : frobenius(-2, I)

o9 = ideal (w, z, x)

o9 : Ideal of R
i10 : frobeniusRoot(2, I)

o10 = ideal (w, z, x)

o10 : Ideal of R

If $M$ is a matrix with entries in a ring of characteristic $p > 0$ and $e$ is a nonnegative integer, then frobenius(e, M), or frobenius^e(M), outputs a matrix whose entries are the $p^e$-th powers of the entries of $M$.

i11 : R = ZZ/3[x,y];
i12 : M = matrix {{x, y},{x + y, x^2 + y^2}};

              2      2
o12 : Matrix R  <-- R
i13 : frobenius(2, M)

o13 = | x9    y9      |
      | x9+y9 x18+y18 |

              2      2
o13 : Matrix R  <-- R

frobenius(I) and frobenius(M) are abbreviations for frobenius(1, I) and frobenius(1, M).

See also

For the programmer

The object frobenius is an instance of the type FrobeniusOperator.


The source of this document is in TestIdeals/frobeniusPowersDoc.m2:63:0.