Macaulay2 » Documentation
Packages » TorAlgebra :: torAlgData(Ideal)
next | previous | forward | backward | up | index | toc

torAlgData(Ideal) -- invariants of a local ring and its class (w.r.t. multiplication in homology)

Synopsis

Description

See torAlgData(QuotientRing).

i1 : Q = QQ[x,y,z];
i2 : data = torAlgData (ideal(x*y,y*z,x^3,x^2*z,x*z^2-y^3,z^3))

                                          2    3    4
                               2 + 2T - 2T  - T  + T
o2 = HashTable{"BassSeries" => ----------------------    }
                                         2     3    4
                               1 - T - 5T  - 2T  + T
               "c" => 3
               "Class" => G
               "e" => 3
               "h" => 0
               "isCI" => false
               "isGolod" => false
               "isGorenstein" => false
               "m" => 6
               "n" => 2
               "p" => 0
                                                 2
                                          (1 + T)
               "PoincareSeries" => ----------------------
                                             2     3    4
                                   1 - T - 5T  - 2T  + T
               "q" => 1
               "r" => 3

o2 : HashTable
i3 : data#"PoincareSeries"

                   2
            (1 + T)
o3 = ----------------------
               2     3    4
     1 - T - 5T  - 2T  + T

o3 : Expression of class Divide

Ways to use this method: