i1 : A=matrix{{0, 0, 0, 1, 1,5}, {7,0, 1, 3, 0, 2},{1,1, 1, 1, 1, 1}}
o1 =  0 0 0 1 1 5 
 7 0 1 3 0 2 
 1 1 1 1 1 1 
3 6
o1 : Matrix ZZ < ZZ

i2 : edDeg(A)
The toric variety has degree = 35
The dual variety has degree = 53, and codimension = 1
ChernMather Volumes: (V_0,..,V_(d1)) = {12, 20, 35}
Polar Degrees: {53, 85, 35}
ED Degree = 173
5 4 3
ChernMather Class:  12h + 20h + 35h
o2 = 173
o2 : QQ

i3 : A=matrix{{3, 0, 0, 1, 1,2}, {3,5,0,2,1,3},{0, 1, 2, 0, 2,0},{1, 1, 1, 1, 1,1}}
o3 =  3 0 0 1 1 2 
 3 5 0 2 1 3 
 0 1 2 0 2 0 
 1 1 1 1 1 1 
4 6
o3 : Matrix ZZ < ZZ

i4 : time edDeg(A)
 used 2.06682s (cpu); 1.47094s (thread); 0s (gc)
The toric variety has degree = 28
The dual variety has degree = 45, and codimension = 1
ChernMather Volumes: (V_0,..,V_(d1)) = {20, 23, 31, 28}
Polar Degrees: {45, 98, 81, 28}
ED Degree = 252
5 4 3 2
ChernMather Class: 20h + 23h + 31h + 28h
o4 = 252
o4 : QQ

i5 : time edDeg(A,ForceAmat=>true)
 used 7.58024s (cpu); 5.15858s (thread); 0s (gc)
The toric variety has degree = 28
The dual variety has degree = 45, and codimension = 1
ChernMather Volumes: (V_0,..,V_(d1)) = {20, 23, 31, 28}
Polar Degrees: {45, 98, 81, 28}
ED Degree = 252
5 4 3 2
ChernMather Class: 20h + 23h + 31h + 28h
o5 = 252
o5 : QQ
