Macaulay2 » Documentation
Packages » TriangularSets :: isPrimeSimple
next | previous | forward | backward | up | index | toc

isPrimeSimple -- simple primality test of triangular systems

Synopsis

Description

Let $T = (t_1,t_2,\cdots,t_k)$ be a triangular set (i.e., their main variables are distinct). This method verifies if the following properties hold:

(i) the main degree of $t_i$ is one for $i=1,\dots,k-1$,

(ii) $t_k$ is an irreducible polynomial.

If these properties hold then the saturated ideal of $T$ is a prime ideal.

i1 : R = QQ[x,y,z,MonomialOrder=>Lex];
i2 : F = {x*y^2 - y*z, y^3 + z^2};
i3 : T = triaSystem(R,F,{y});
i4 : isPrimeSimple(T)

o4 = true
i5 : I = saturate T

                   2            2
o5 = ideal (x*z + y , x*y - z, x  + y)

o5 : Ideal of R
i6 : isPrime I

o6 = true

      

See also

Ways to use isPrimeSimple:

For the programmer

The object isPrimeSimple is a method function.