Macaulay2 » Documentation
Packages » TriangularSets :: isStronglyNormalized
next | previous | forward | backward | up | index | toc

isStronglyNormalized -- whether a triangular set is strongly normalized

Synopsis

Description

Let $T = (t_1,t_2,\cdots,t_k)$ be a triangular set (i.e., their main variables are distinct). $T$ is strongly normalized if the initial of each $t_i$ only involves free variables.

i1 : R = QQ[x,y,t,s,MonomialOrder=>Lex];
i2 : F = {x + y^2 - t, t^2 -s};
i3 : T = triaSystem(R,F,{});
i4 : isStronglyNormalized(T)

o4 = true
i5 : R = QQ[x,y,z,MonomialOrder=>Lex];
i6 : F = {x*y - y*z, y^2 - z^2};
i7 : T = triaSystem(R,F,{y});
i8 : isStronglyNormalized(T)

o8 = false

      

See also

Ways to use isStronglyNormalized:

For the programmer

The object isStronglyNormalized is a method function.