Description
Triplets is a package to calculate
1) Betti diagrams of triplets of pure free squarefree complexes, as introduced in math.AC/1207.2071 "Triplets of pure free squarefree complexes"
2) hypercohomology tables associated to homology triplets, as given in math.AC/1212.3675 "Zipping Tate resolutions and exterior coalgebras"
by Gunnar Floeystad.
Degree sequences
-
strands -- strand span of degree sequence
-
strandsL -- strand span as a subset of [0,n]
-
conj -- conjugate of degree sequence
Degree triplets and homology triplets
Checking triplets
Betti diagrams
-
Betti1 -- Betti numbers of first pure complex
-
Betti3 -- Betti numbers of the three pure complexes
-
BettiDiagram1 -- Betti diagram of first pure complex
-
BettiDiagram3 -- Betti diagrams of the three pure complexes
Polynomials
-
binPol -- product of two binomial polynomials
-
hilbCoeff -- coefficients of Hilbert polynomial
-
hilbPol -- Hilbert polynomial
-
chiPol -- Hilbert polynomial of cohomology sheaves
Cohomology tables
We create a Triplet using the
triplet function:
i1 : T = triplet({1,2,3}, {0,2}, {0,2,3})
o1 = {{1, 2, 3}, {0, 2}, {0, 2, 3}}
o1 : Triplet
|
i2 : isDegreeTriplet T
o2 = true
|
We can rotate this degree triplet forwards or backwards:
i3 : rotForw T
o3 = {{0, 2}, {0, 2, 3}, {1, 2, 3}}
o3 : Triplet
|
i4 : rotBack T
o4 = {{0, 2, 3}, {1, 2, 3}, {0, 2}}
o4 : Triplet
|
We can compute the Betti numbers and Betti diagrams associated to the degree sequences of this triplet:
i5 : Betti3 T
{1, 2, 3} ===> {3, 6, 2}
{0, 2} ===> {1, 3}
{0, 2, 3} ===> {2, 3, 1}
|
i6 : BettiDiagram3 T
0 1 2 0 1 0 1 2
total: 3 6 2 total: 1 3 total: 2 3 1
1: 3 6 2 0: 1 . 0: 2 . .
1: . 3 1: . 3 1
|
We convert it to a homology triplet:
i7 : Th = toHomology T
o7 = {{1, 2, 3}, {1, 3}, {0, 2, 3}}
o7 : Triplet
|
i8 : isHomologyTriplet Th
o8 = true
|
We compute the hypercohomology table of a complex of coherent sheaves associated to this homology triplet:
i9 : cohTable (-7, 5,Th)
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
o9 = 2: 77 50 30 16 7 2 . . . . . . .
1: 2 2 2 2 2 2 2 1 . . . . .
0: . . . . . . . . 1 2 3 4 5
-1: . . . . . . . 1 4 10 20 35 56
o9 : CohomologyTally
|
The dual homology triplet and its hypercohomology table:
i10 : Thd = dualHomTriplet Th
o10 = {{0, 1, 2}, {0, 2, 3}, {1, 3}}
o10 : Triplet
|
i11 : cohTable (-7,5,Thd)
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
o11 = 2: 56 35 20 10 4 1 . . . . . . .
1: 5 4 3 2 1 . . . . . . . .
0: . . . . . 1 2 2 2 2 2 2 2
-1: . . . . . . . 2 7 16 30 50 77
o11 : CohomologyTally
|