D*C
Computes the intersection product of a ToricCycle with another ToricCycle.
i1 : X = toricProjectiveSpace 5 o1 = X o1 : NormalToricVariety
i2 : D = X_{0,1}+5*X_{1,3}-X_{2}+2*X_{3} o2 = X - X + 2*X + 5*X {0, 1} {2} {3} {1, 3} o2 : ToricCycle on X
i3 : C = X_{2,3} o3 = X {2, 3} o3 : ToricCycle on X
i4 : D*C o4 = X + X + 5*X {2, 3, 5} {0, 1, 2, 3} {1, 2, 3, 5} o4 : ToricCycle on X
Self intersection of the exceptional divisor.
i5 : X = toricProjectiveSpace 2 o5 = X o5 : NormalToricVariety
i6 : Y = toricBlowup({0,1},X) o6 = Y o6 : NormalToricVariety
i7 : D = Y_{3} o7 = Y {3} o7 : ToricCycle on Y
i8 : D*D o8 = - Y {1, 3} o8 : ToricCycle on Y