Description
This function computes the
p-th exterior power of the cotangent sheaf of a variety
X.
As an example we compute h^11 on a K3 surface (a quartic in projective threespace):
i1 : K3 = Proj(QQ[x_0..x_3]/(x_0^4+x_1^4+x_2^4+x_3^4-11*x_0*x_1*x_2*x_3))
o1 = K3
o1 : ProjectiveVariety
|
i2 : omega1 = cotangentSheaf(1,K3);
|
i3 : HH^1(omega1)
20
o3 = QQ
o3 : QQ-module, free
|
As a second example we compute Hodge numbers of the Fermat quintic in projective fourspace:
i4 : FermatQuintic = Proj(QQ[x_0..x_4]/(x_0^5+x_1^5+x_2^5+x_3^5+x_4^5))
o4 = FermatQuintic
o4 : ProjectiveVariety
|
i5 : omega1 = cotangentSheaf(1,FermatQuintic);
|
i6 : HH^1(omega1)
1
o6 = QQ
o6 : QQ-module, free
|
i7 : omega2 = cotangentSheaf(2,FermatQuintic);
|
i8 : HH^1(omega2)
101
o8 = QQ
o8 : QQ-module, free
|
i9 : HH^2(omega1)
101
o9 = QQ
o9 : QQ-module, free
|