Description
In Macaulay2, each coherent sheaf comes equipped with a module over the coordinate ring. In the homogeneous case, this is not necessarily the number of generators of the sum of twists
H^0(F(d)), summed over all d, which in fact could be infinitely generated.
i1 : R = QQ[a..d]/(a^3+b^3+c^3+d^3)
o1 = R
o1 : QuotientRing
|
i2 : X = Proj R;
|
i3 : T' = cotangentSheaf X
o3 = cokernel {2} | c 0 0 d 0 a2 b2 0 |
{2} | a d 0 0 b2 -c2 0 0 |
{2} | -b 0 d 0 a2 0 c2 0 |
{2} | 0 b a 0 -d2 0 0 c2 |
{2} | 0 -c 0 a 0 -d2 0 b2 |
{2} | 0 0 -c -b 0 0 d2 a2 |
6
o3 : coherent sheaf on X, quotient of OO (-2)
X
|
i4 : numgens T'
o4 = 6
|
i5 : module T'
o5 = cokernel {2} | c 0 0 d 0 a2 b2 0 |
{2} | a d 0 0 b2 -c2 0 0 |
{2} | -b 0 d 0 a2 0 c2 0 |
{2} | 0 b a 0 -d2 0 0 c2 |
{2} | 0 -c 0 a 0 -d2 0 b2 |
{2} | 0 0 -c -b 0 0 d2 a2 |
6
o5 : R-module, quotient of R
|