Macaulay2 » Documentation
Packages » AssociativeAlgebras :: toCommRing
next | previous | forward | backward | up | index | toc

toCommRing -- Compute the abelianization of a Ring and returns a Ring.

Description

This method takes a noncommutative ring and returns the quotient of a commutative polynomial ring (or an exterior algebra, if SkewCommutative=>true) on the same generators by the defining relations of the input ring.

i1 : A = skewPolynomialRing(QQ,(-1)_QQ,{w,x,y,z})

o1 = A

o1 : FreeAlgebraQuotient
i2 : x*y-y*x

o2 = -2y*x

o2 : A
i3 : w^2

      2
o3 = w

o3 : A
i4 : B = toCommRing(A)

o4 = B

o4 : QuotientRing
i5 : x*y

o5 = 0

o5 : B
i6 : w^2

      2
o6 = w

o6 : B
i7 : C = toCommRing(A,SkewCommutative=>true)

o7 = C

o7 : PolynomialRing, 4 skew commutative variable(s)
i8 : x*y-y*x

o8 = 2x*y

o8 : C
i9 : w^2

o9 = 0

o9 : C

See also

Ways to use toCommRing:

  • toCommRing(FreeAlgebra)
  • toCommRing(FreeAlgebraQuotient)

For the programmer

The object toCommRing is a method function with options.


The source of this document is in AssociativeAlgebras/doc.m2:901:0.