Macaulay2
»
Documentation
Packages
»
AssociativeAlgebras
::
Index
next | previous | forward | backward | up |
index
|
toc
AssociativeAlgebras : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
AssociativeAlgebras
-- Noncommutative algebra computations
Basic operations on noncommutative algebras
centralElements
-- Finds central elements in a given degree
centralElements(Ring,ZZ)
-- Finds central elements in a given degree
Defining a noncommutative ring
Derivation
-- Derivation defined on a noncommutative algebra
derivation
-- Derivation defined on a noncommutative algebra
Derivation RingElement
-- Derivation defined on a noncommutative algebra
Derivation ZZ
-- Derivation defined on a noncommutative algebra
derivation(FreeAlgebra,List)
-- Derivation defined on a noncommutative algebra
derivation(FreeAlgebra,List,RingMap)
-- Derivation defined on a noncommutative algebra
derivation(FreeAlgebraQuotient,List)
-- Derivation defined on a noncommutative algebra
derivation(FreeAlgebraQuotient,List,RingMap)
-- Derivation defined on a noncommutative algebra
derivationQuotient
-- Computes the derivation-quotient algebra of a superpotential
derivationQuotient(...,Strategy=>...)
-- Computes the derivation-quotient algebra of a superpotential
derivationQuotient(RingElement,ZZ)
-- Computes the derivation-quotient algebra of a superpotential
derivationQuotientIdeal
-- Computes the derivation-quotient algebra of a superpotential
derivationQuotientIdeal(RingElement,ZZ)
-- Computes the derivation-quotient algebra of a superpotential
endomorphismRingIdeal
-- Find the relations of an endomorphism ring
endomorphismRingIdeal(Module,Symbol)
-- Find the relations of an endomorphism ring
extAlgebra
-- Compute the Ext algebra of a ring
extAlgebra(...,DegreeLimit=>...)
-- Compute the Ext algebra of a ring
extAlgebra(Ring,Symbol)
-- Compute the Ext algebra of a ring
fourDimSklyanin
-- Defines a four-dimensional Sklyanin with given parameters
fourDimSklyanin(...,DegreeLimit=>...)
-- Defines a four-dimensional Sklyanin with given parameters
fourDimSklyanin(Ring,List)
-- Defines a four-dimensional Sklyanin with given parameters
fourDimSklyanin(Ring,List,List)
-- Defines a four-dimensional Sklyanin with given parameters
FreeAlgebra
-- Type of a free algebra
freeAlgebra
-- Create a FreeAlgebra
FreeAlgebra ** FreeAlgebra
-- Define the (q-)commuting tensor product
FreeAlgebra ** FreeAlgebraQuotient
-- Define the (q-)commuting tensor product
FreeAlgebra / Ideal
-- Type of a noncommutative ring
freeAlgebra(Ring,BasicList)
-- Create a FreeAlgebra
FreeAlgebraQuotient
-- Type of a noncommutative ring
FreeAlgebraQuotient ** FreeAlgebra
-- Define the (q-)commuting tensor product
FreeAlgebraQuotient ** FreeAlgebraQuotient
-- Define the (q-)commuting tensor product
freeProduct
-- Define the free product of two algebras
freeProduct(Ring,Ring)
-- Define the free product of two algebras
homogDual
-- Computes the dual of a pure homogeneous ideal
homogDual(FreeAlgebra)
-- Computes the dual of a pure homogeneous ideal
homogDual(FreeAlgebraQuotient)
-- Computes the dual of a pure homogeneous ideal
homogDual(Ideal)
-- Computes the dual of a pure homogeneous ideal
isCentral
-- Determines if an element is central
isCentral(RingElement)
-- Determines if an element is central
isLeftRegular
-- Determines if a given (homogeneous) element is regular in a given degree
isLeftRegular(RingElement,ZZ)
-- Determines if a given (homogeneous) element is regular in a given degree
isNormal(RingElement)
-- Determines if an element of a noncommutative ring is normal
isRightRegular
-- Determines if a given (homogeneous) element is regular in a given degree
isRightRegular(RingElement,ZZ)
-- Determines if a given (homogeneous) element is regular in a given degree
isSuperpotential
(missing documentation)
leftMultiplicationMap
-- Computes a matrix for left or right multiplication by a homogeneous element
leftMultiplicationMap(RingElement,List,List)
-- Computes a matrix for left or right multiplication by a homogeneous element
leftMultiplicationMap(RingElement,ZZ)
-- Computes a matrix for left or right multiplication by a homogeneous element
leftMultiplicationMap(RingElement,ZZ,ZZ)
-- Computes a matrix for left or right multiplication by a homogeneous element
leftQuadraticMatrix
-- Factors the quadratic ideal on the left or on the right.
leftQuadraticMatrix(Ideal)
-- Factors the quadratic ideal on the left or on the right.
leftQuadraticMatrix(List)
-- Factors the quadratic ideal on the left or on the right.
lineSchemeFourDim
-- Compute the line scheme of a four-dimensional AS regular algebra
lineSchemeFourDim(FreeAlgebraQuotient,Symbol)
-- Compute the line scheme of a four-dimensional AS regular algebra
nakayamaAut
-- Computes the Nakayama automorphism using the superpotential
nakayamaAut(...,Strategy=>...)
-- Computes the Nakayama automorphism using the superpotential
nakayamaAut(FreeAlgebraQuotient)
-- Computes the Nakayama automorphism using the superpotential
nakayamaAut(RingElement)
-- Computes the Nakayama automorphism using the superpotential
ncBasis
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(...,Limit=>...)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(...,Strategy=>...)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(InfiniteNumber,InfiniteNumber,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(InfiniteNumber,List,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(InfiniteNumber,ZZ,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(List,InfiniteNumber,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(List,List,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(List,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(ZZ,InfiniteNumber,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(ZZ,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
ncBasis(ZZ,ZZ,Ring)
-- Returns a basis of an noncommutative ring in specified degrees.
NCGB
-- Compute a two-sided Groebner basis of an ideal to a specified degree
NCGB(...,Strategy=>...)
-- Compute a two-sided Groebner basis of an ideal to a specified degree
NCGB(Ideal)
-- Compute a two-sided Groebner basis of an ideal to a specified degree
NCGB(Ideal,ZZ)
-- Compute a two-sided Groebner basis of an ideal to a specified degree
ncGraphIdeal
-- Compute the graph ideal of a ring map between noncommutative rings.
ncGraphIdeal(RingMap)
-- Compute the graph ideal of a ring map between noncommutative rings.
ncHilbertSeries
-- Computes the Hilbert series of a noncommutative ring
ncHilbertSeries(...,Order=>...)
-- Computes the Hilbert series of a noncommutative ring
ncHilbertSeries(FreeAlgebra)
-- Computes the Hilbert series of a noncommutative ring
ncHilbertSeries(FreeAlgebraQuotient)
-- Computes the Hilbert series of a noncommutative ring
ncKernel
-- Compute the graph ideal of a ring map between noncommutative rings.
ncKernel(...,DegreeLimit=>...)
-- Compute the graph ideal of a ring map between noncommutative rings.
ncKernel(...,Strategy=>...)
-- Compute the graph ideal of a ring map between noncommutative rings.
ncKernel(RingMap)
-- Compute the graph ideal of a ring map between noncommutative rings.
ncMatrixMult
-- Correctly multiplies matrices from noncommutative rings.
ncMatrixMult(Matrix,Matrix)
-- Correctly multiplies matrices from noncommutative rings.
NCReductionTwoSided
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(Matrix,Ideal)
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(Matrix,List)
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(Matrix,Matrix)
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(RingElement,Ideal)
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(RingElement,List)
-- Reduces the entries of an Matrix with respect to an ideal
NCReductionTwoSided(RingElement,Matrix)
-- Reduces the entries of an Matrix with respect to an ideal
normalAutomorphism
-- Computes the automorphism determined by a normal homogeneous element
normalAutomorphism(RingElement)
-- Computes the automorphism determined by a normal homogeneous element
normalElements
-- Finds normal elements
normalElements(FreeAlgebraQuotient,ZZ,Symbol)
-- Finds normal elements
normalElements(RingMap,ZZ)
-- Finds elements normalized by a ring map
oppositeRing
-- Creates the opposite ring of a noncommutative ring
oppositeRing(FreeAlgebra)
-- Creates the opposite ring of a noncommutative ring
oppositeRing(FreeAlgebraQuotient)
-- Creates the opposite ring of a noncommutative ring
oreExtension
-- Creates an Ore extension of a noncommutative ring
oreExtension(...,Degree=>...)
-- Creates an Ore extension of a noncommutative ring
oreExtension(Ring,RingMap,Derivation,RingElement)
-- Creates an Ore extension of a noncommutative ring
oreExtension(Ring,RingMap,Derivation,Symbol)
-- Creates an Ore extension of a noncommutative ring
oreExtension(Ring,RingMap,RingElement)
-- Creates an Ore extension of a noncommutative ring
oreExtension(Ring,RingMap,Symbol)
-- Creates an Ore extension of a noncommutative ring
oreIdeal
-- Creates the defining ideal of an Ore extension of a noncommutative ring
oreIdeal(...,Degree=>...)
-- Creates the defining ideal of an Ore extension of a noncommutative ring
oreIdeal(Ring,RingMap,Derivation,RingElement)
-- Creates the defining ideal of an Ore extension of a noncommutative ring
oreIdeal(Ring,RingMap,Derivation,Symbol)
-- Creates the defining ideal of an Ore extension of a noncommutative ring
oreIdeal(Ring,RingMap,RingElement)
-- Creates the defining ideal of an Ore extension of a noncommutative ring
oreIdeal(Ring,RingMap,Symbol)
-- Creates the defining ideal of an Ore extension of a noncommutative ring
pointScheme
-- Compute the point scheme of the quadratic algebra B
pointScheme(FreeAlgebraQuotient,Symbol)
-- Compute the point scheme of the quadratic algebra B
qTensorProduct
-- Define the (q-)commuting tensor product
qTensorProduct(Ring,Ring,QQ)
-- Define the (q-)commuting tensor product
qTensorProduct(Ring,Ring,RingElement)
-- Define the (q-)commuting tensor product
qTensorProduct(Ring,Ring,ZZ)
-- Define the (q-)commuting tensor product
quadraticClosure
-- Creates the subideal generated by quadratic elements of a given ideal
quadraticClosure(FreeAlgebra)
-- Creates the subideal generated by quadratic elements of a given ideal
quadraticClosure(FreeAlgebraQuotient)
-- Creates the subideal generated by quadratic elements of a given ideal
quadraticClosure(Ideal)
-- Creates the subideal generated by quadratic elements of a given ideal
rightKernel
-- Right kernel of a matrix
rightKernel(...,DegreeLimit=>...)
-- Right kernel of a matrix
rightKernel(...,Strategy=>...)
-- Right kernel of a matrix
rightKernel(Matrix)
-- Right kernel of a matrix
rightMultiplicationMap
-- Computes a matrix for left or right multiplication by a homogeneous element
rightMultiplicationMap(RingElement,List,List)
-- Computes a matrix for left or right multiplication by a homogeneous element
rightMultiplicationMap(RingElement,ZZ)
-- Computes a matrix for left or right multiplication by a homogeneous element
rightMultiplicationMap(RingElement,ZZ,ZZ)
-- Computes a matrix for left or right multiplication by a homogeneous element
rightQuadraticMatrix
-- Factors the quadratic ideal on the left or on the right.
rightQuadraticMatrix(Ideal)
-- Factors the quadratic ideal on the left or on the right.
rightQuadraticMatrix(List)
-- Factors the quadratic ideal on the left or on the right.
skewPolynomialRing
-- Defines a skew polynomial ring via a skewing matrix
skewPolynomialRing(Ring,Matrix,List)
-- Defines a skew polynomial ring via a skewing matrix
skewPolynomialRing(Ring,QQ,List)
-- Defines a skew polynomial ring via a scaling factor
skewPolynomialRing(Ring,RingElement,List)
-- Defines a skew polynomial ring via a scaling factor
skewPolynomialRing(Ring,ZZ,List)
-- Defines a skew polynomial ring via a scaling factor
superpotential
-- Computes the (twisted) superpotential of an m-Koszul AS regular algebra
superpotential(...,Strategy=>...)
-- Computes the (twisted) superpotential of an m-Koszul AS regular algebra
superpotential(FreeAlgebraQuotient)
-- Computes the (twisted) superpotential of an m-Koszul AS regular algebra
threeDimSklyanin
-- Defines a three-dimensional Sklyanin with given parameters
threeDimSklyanin(...,DegreeLimit=>...)
-- Defines a three-dimensional Sklyanin with given parameters
threeDimSklyanin(Ring,List)
-- Defines a three-dimensional Sklyanin with given parameters
threeDimSklyanin(Ring,List,List)
-- Defines a three-dimensional Sklyanin with given parameters
toCommRing
-- Compute the abelianization of a Ring and returns a Ring.
toCommRing(...,SkewCommutative=>...)
-- Compute the abelianization of a Ring and returns a Ring.
toCommRing(FreeAlgebra)
-- Compute the abelianization of a Ring and returns a Ring.
toCommRing(FreeAlgebraQuotient)
-- Compute the abelianization of a Ring and returns a Ring.
toFreeAlgebraQuotient
-- Converts a Ring to a noncommutative ring
toFreeAlgebraQuotient(Ring)
-- Converts a Ring to a noncommutative ring
toRationalFunction
-- Attempt to find a rational function representation.
toRationalFunction(List)
-- Attempt to find a rational function representation.
UseVariables
-- Create a FreeAlgebra