Macaulay2 » Documentation
Packages » BernsteinSato :: DintegrationComplex
next | previous | forward | backward | up | index | toc

DintegrationComplex -- derived integration complex of a D-module

Synopsis

Description

An extension of Dintegration that computes the derived integration complex.
i1 : R = QQ[x_1,x_2,D_1,D_2,WeylAlgebra=>{x_1=>D_1,x_2=>D_2}]

o1 = R

o1 : PolynomialRing, 2 differential variable(s)
i2 : I = ideal(x_1, D_2-1) 

o2 = ideal (x , D  - 1)
             1   2

o2 : Ideal of R
i3 : DintegrationComplex(I,{1,0})

                        1                 1
o3 = 0  <-- (QQ[x , D ])  <-- (QQ[x , D ])  <-- 0
                 2   2             2   2         
     -1                                         2
            0                 1

o3 : ChainComplex

Caveat

The module M should be specializable to the subspace. This is true for holonomic modules.The weight vector w should be a list of n numbers if M is a module over the nth Weyl algebra.

See also

Ways to use DintegrationComplex:

For the programmer

The object DintegrationComplex is a method function with options.