Macaulay2 » Documentation
Packages » BernsteinSato :: DrestrictionClasses
next | previous | forward | backward | up | index | toc

DrestrictionClasses -- restriction classes of a D-module

Synopsis

Description

An extension of Drestriction that computes the explicit cohomology classes of a derived restriction complex.
i1 : R = QQ[x_1,x_2,D_1,D_2,WeylAlgebra=>{x_1=>D_1,x_2=>D_2}]

o1 = R

o1 : PolynomialRing, 2 differential variable(s)
i2 : I = ideal(x_1, D_2-1) 

o2 = ideal (x , D  - 1)
             1   2

o2 : Ideal of R
i3 : DrestrictionClasses(I,{1,0})

o3 = HashTable{Boundaries => HashTable{0 => 0        }}
                                       1 => | D_2-1 |
                                            | 0     |
               Cycles => HashTable{0 => 0    }
                                   1 => | 1 |
                                        | 0 |
                               1      2      1
               VResolution => R  <-- R  <-- R
                                             
                              0      1      2

o3 : HashTable

Caveat

The module M should be specializable to the subspace. This is true for holonomic modules.The weight vector w should be a list of n numbers if M is a module over the nth Weyl algebra.

See also

Ways to use DrestrictionClasses:

For the programmer

The object DrestrictionClasses is a method function with options.