Macaulay2 » Documentation
Packages » BernsteinSato :: isInMultiplierIdeal(RingElement,Ideal,QQ)
next | previous | forward | backward | up | index | toc

isInMultiplierIdeal(RingElement,Ideal,QQ) -- multiplier ideal membership test



Test if the given polynomial is in the multiplier ideal for given ideal and coefficient. In general, the test is cheaper than computing the whole multiplier ideal.

There are two options for strategy: See Berkesch and Leykin ``Algorithms for Bernstein-Sato polynomials and multiplier ideals'' for details.
i1 : R = QQ[x_1..x_4];
i2 : isInMultiplierIdeal(x_1, ideal {x_1^3 - x_2^2, x_2^3 - x_3^2}, 31/18)

o2 = false
i3 : isInMultiplierIdeal(x_1*x_2, ideal {x_1^3 - x_2^2, x_2^3 - x_3^2}, 31/18)

o3 = true

See also

Ways to use this method: