Macaulay2 » Documentation
Packages » BernsteinSato :: jumpingCoefficients(Ideal)
next | previous | forward | backward | up | index | toc

jumpingCoefficients(Ideal) -- jumping coefficients and corresponding multiplier ideals

Synopsis

Description

Computes the jumping coefficients and their multiplier ideals in an open interval (a,b). By default a = 0, b = analyticSpread I. The options are passed to multiplierIdeal.

See Berkesch and Leykin ``Algorithms for Bernstein-Sato polynomials and multiplier ideals'' for details.
i1 : R = QQ[x_1..x_4];
i2 : jumpingCoefficients ideal {x_1^3 - x_2^2, x_2^3 - x_3^2}

       4  29  31  11  35                                        2        
o2 = ({-, --, --, --, --}, {ideal (x , x , x ), ideal (x , x , x ), ideal
       3  18  18   6  18            3   2   1           3   2   1        
     ------------------------------------------------------------------------
           2         2           2               2         3           2 
     (x , x , x x , x ), ideal (x , x x , x x , x , x x , x ), ideal (x ,
       3   2   1 2   1           3   2 3   1 3   2   1 2   1           3 
     ------------------------------------------------------------------------
                  2   2     3
     x x , x x , x , x x , x )})
      2 3   1 3   2   1 2   1

o2 : Sequence

See also

Ways to use this method: