localCohom(d,I)
i1 : W = QQ[X, dX, Y, dY, Z, dZ, WeylAlgebra=>{X=>dX, Y=>dY, Z=>dZ}] o1 = W o1 : PolynomialRing, 3 differential variable(s)
i2 : I = ideal (X*(Y-Z), X*Y*Z) o2 = ideal (X*Y - X*Z, X*Y*Z) o2 : Ideal of W
i3 : h = localCohom (2,I) o3 = cokernel | -XYZ XY-XZ 3XdX-2YdY-2ZdZ YdY+ZdZ+3 Y2dY-2YdYZ-2YZdZ+Z2dZ | 1 o3 : W-module, quotient of W
i4 : Dprune h o4 = cokernel | Y-Z Z2 dYZ+ZdZ+2 XdX+2 | 1 o4 : W-module, quotient of W