CellVariables => ..., default value null, cellular variables
Outputs:
the radical of I
Description
The radical of a cellular binomial ideal can be determined very quickly. If the cellular variables are known they can be given as a list via the option CellVariables.
i1 : R = QQ[x,y,z]
o1 = R
o1 : PolynomialRing
i2 : I = ideal(y^3,y^2*z^2-x^3,x*y^2*z,x^3*z-x*y)
3 2 2 3 2 3
o2 = ideal (y , y z - x , x*y z, x z - x*y)
o2 : Ideal of R