Macaulay2 » Documentation
Packages » CellularResolutions :: HH CellComplex
next | previous | forward | backward | up | index | toc

HH CellComplex -- compute the homology modules of a cell complex

Synopsis

Description

This computes the reduced homology of the cellular complex arising from the labeled cell complex C.

If the labels are all 1, then this will be the standard homology of the cell complex over the label ring, as in the following example.

i1 : R = QQ[x]

o1 = R

o1 : PolynomialRing
i2 : a = newSimplexCell({},1);
i3 : b1 = newCell {a,a};
i4 : b2 = newCell {a,a};
i5 : C = cellComplex(R,{b1,b2});
i6 : HH C

                                      2
o6 = cokernel | -1 | <-- image 0 <-- R
                                      
     -1                  0           1

o6 : Complex
i7 : prune oo

      2
o7 = R
      
     1

o7 : Complex

However if the cells instead labeled with monomials (or monomial ideals) from the ring the homology of the corresponding complex of R modules is given.

i8 : R = QQ[x]

o8 = R

o8 : PolynomialRing
i9 : a = newSimplexCell({},x);
i10 : b1 = newCell {a,a};
i11 : b2 = newCell {a,a};
i12 : C = cellComplex(R,{b1,b2});
i13 : HH C

                                       2
o13 = cokernel | -x | <-- image 0 <-- R
                                       
      -1                  0           1

o13 : Complex
i14 : prune oo

                                2
o14 = cokernel | x | <-- 0 <-- R
                                
      -1                 0     1

o14 : Complex

See also

Ways to use this method: