Useful, for example, when checking whether a map is a resolution of a complex in cases where the actual resolution is infinite
i1 : kk= ZZ/101
o1 = kk
o1 : QuotientRing
|
i2 : S = kk[a,b,c]
o2 = S
o2 : PolynomialRing
|
i3 : R = S/ideal(a^3)
o3 = R
o3 : QuotientRing
|
i4 : M = R^1/ideal(a)
o4 = cokernel | a |
1
o4 : R-module, quotient of R
|
i5 : C = chainComplex{map(M,R^0,0)}
o5 = M <-- 0
0 1
o5 : ChainComplex
|
i6 : m=cartanEilenbergResolution (C, LengthLimit => 10)
1
o6 = 0 : cokernel | a | <--------- R : 0
| 1 |
1
1 : 0 <----- R : 1
0
o6 : ChainComplexMap
|
i7 : isQuasiIsomorphism(m, LengthLimit=> 10)
o7 = true
|
i8 : isQuasiIsomorphism(m, LengthLimit => 12)
o8 = false
|