Macaulay2
»
Documentation
Packages
»
ChainComplexExtras
::
taylorResolution(...,LengthLimit=>...)
next
|
previous
|
forward
|
backward
| up |
index
|
toc
taylorResolution(...,LengthLimit=>...) -- How many steps to compute
Synopsis
Usage:
m = taylorResolution(C,LengthLimit => n)
Inputs:
C
,
a
chain complex
,
n
,
an
integer
, non-negative integer or infinity
Outputs:
m
,
a
chain complex
,
Description
Computes LengthLimit steps
Further information
Default value:
0
Function:
taylorResolution
-- Gives the Taylor resolution of a monomial ideal I.
Option key:
LengthLimit
-- stop when the resolution reaches this length
Functions with optional argument named
LengthLimit
:
cartanEilenbergResolution(...,LengthLimit=>...)
-- How many steps to compute
isExact(...,LengthLimit=>...)
-- Option to check exactness only up to a particular homological degree
isQuasiIsomorphism(...,LengthLimit=>...)
-- Option to check quasi-isomorphism only up to a certain point
koszulComplex(...,LengthLimit=>...)
-- How many steps to compute
minimalBetti(...,LengthLimit=>...)
-- see
minimalBetti
-- minimal betti numbers of (the minimal free resolution of) a homogeneous ideal or module
resolution(...,LengthLimit=>...)
-- stop when the resolution reaches this length
resolutionOfChainComplex(...,LengthLimit=>...)
-- How many steps to compute
taylorResolution(...,LengthLimit=>...)
-- How many steps to compute