Macaulay2 » Documentation
Packages » CoincidentRootLoci :: degree(CoincidentRootLocus)
next | previous | forward | backward | up | index | toc

degree(CoincidentRootLocus) -- compute the degree

Synopsis

Description

The formula for the degree of a coincident root locus $X$ associated with a partition $\lambda=(\lambda_1,\ldots,\lambda_d)$ was determined in the paper by D. Hilbert - Singularitaten der Diskriminantenflache - Math. Ann. 30, 437-441, 1887.

i1 : X = coincidentRootLocus {3,2,2,1,1,1,1}

o1 = CRL(3,2,2,1,1,1,1)

o1 : Coincident root locus
i2 : degree X

o2 = 1260

Ways to use this method: