Macaulay2
»
Documentation
Packages
»
CoincidentRootLoci
::
Index
next | previous | forward | backward | up |
index
|
toc
CoincidentRootLoci : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
apolar
-- the apolar map
apolar(...,Variable=>...)
-- specify a name for a variable
apolar(RingElement)
-- the apolar ideal
apolar(RingElement,ZZ)
-- homogeneous components of the apolar ideal
apolar(ZZ,ZZ)
-- the apolar map
apolar(ZZ,ZZ,Ring)
-- the apolar map
chowForm(CoincidentRootLocus)
-- Chow form of a coincident root locus
codim(CoincidentRootLocus)
-- compute the codimension
coefficientRing(CoincidentRootLocus)
-- get the coefficient ring
CoincidentRootLoci
-- A package for computations with coincident root loci
CoincidentRootLocus
-- the class of all coincident root loci
coincidentRootLocus
-- makes a coincident root locus
CoincidentRootLocus * CoincidentRootLocus
-- projective join of coincident root loci
coincidentRootLocus(...,Variable=>...)
-- specify a name for a variable
coincidentRootLocus(List)
-- makes a coincident root locus
coincidentRootLocus(VisibleList,Ring)
-- makes a coincident root locus
complexrank
-- compute the complex rank
complexrank(...,Limit=>...)
-- set a bound for the rank
complexrank(RingElement)
-- compute the complex rank
CRL
(missing documentation)
degree(CoincidentRootLocus)
-- compute the degree
dim(CoincidentRootLocus)
-- compute the dimension
dual(CoincidentRootLocus)
-- the projectively dual to a coincident root locus
generic
-- get the generic element
generic(...,Reduce=>...)
-- reduce the number of variables
generic(...,Variable=>...)
-- specify a name for a variable
generic(CoincidentRootLocus)
-- get the generic element
ideal(CoincidentRootLocus)
-- the defining ideal of a coincident root locus
isInCoisotropic(Ideal,CoincidentRootLocus)
-- test membership in a coisotropic hypersurface
isMember(RingElement,CoincidentRootLocus)
-- test membership in a coincident root locus
isSubset(CoincidentRootLocus,CoincidentRootLocus)
-- whether one object is a subset of another
map(CoincidentRootLocus)
-- the map associated to a coincident root locus
partition(CoincidentRootLocus)
-- the partition associated to a coincident root locus
polarDegrees
-- polar degrees of a coincident root locus
polarDegrees(CoincidentRootLocus)
-- polar degrees of a coincident root locus
projectiveJoin
-- projective join of coincident root loci
projectiveTangentSpace
-- projective tangent space
projectiveTangentSpace(CoincidentRootLocus,RingElement)
-- projective tangent space
QepcadOptions
-- set the number of cells in the garbage collected space
random(CoincidentRootLocus)
-- get a random element
randomBinaryForm
-- random homogeneous polynomial in two variables
randomBinaryForm(...,Variable=>...)
-- specify a name for a variable
randomBinaryForm(ZZ)
-- random homogeneous polynomial in two variables
randomBinaryForm(ZZ,Ring)
-- random homogeneous polynomial in two variables
randomBinaryForm(ZZ,Thing,Thing)
-- random homogeneous polynomial in two variables
randomBinaryForm(ZZ,Thing,Thing,Ring)
-- random homogeneous polynomial in two variables
randomInCoisotropic
-- get a random element
randomInCoisotropic(CoincidentRootLocus,ZZ)
-- get a random element
realrank
-- compute the real rank
realrank(...,Limit=>...)
-- set a bound for the rank
realrank(...,QepcadOptions=>...)
-- set the number of cells in the garbage collected space
realrank(...,Range=>...)
-- can be assigned an interval
realrank(...,Verbose=>...)
-- request verbose feedback
realrank(RingElement)
-- compute the real rank
realRankBoundary
-- algebraic boundaries among typical ranks for real binary forms
realRankBoundary(...,Variable=>...)
-- specify a name for a variable
realRankBoundary(ZZ,ZZ)
-- algebraic boundaries among typical ranks for real binary forms
realRankBoundary(ZZ,ZZ,Ring)
-- algebraic boundaries among typical ranks for real binary forms
realroots
-- real roots of a binary form
realroots(...,Verbose=>...)
-- request verbose feedback
realroots(RingElement)
-- real roots of a binary form
recover
-- recover the binary form from its apolar ideal
recover(Ideal)
-- recover the binary form from its apolar ideal
recover(RingElement,RingElement)
-- recover the binary form from its apolar ideal
ring(CoincidentRootLocus)
-- get the ring of a coincident root locus
singularLocus(CoincidentRootLocus)
-- the singular locus of a coincident root locus
subsets(CoincidentRootLocus)
-- produce all the subloci
supsets
-- produce all the suploci
supsets(CoincidentRootLocus)
-- produce all the suploci
switch(Ideal)
switch(List)
switch(RingElement)