Macaulay2 » Documentation
Packages » CoincidentRootLoci :: projectiveTangentSpace
next | previous | forward | backward | up | index | toc

projectiveTangentSpace -- projective tangent space

Synopsis

Description

i1 : R = QQ[x,y];
i2 : F = x^7+2*x^6*y-x^5*y^2-4*x^4*y^3-x^3*y^4+2*x^2*y^5+x*y^6

      7     6     5 2     4 3    3 4     2 5      6
o2 = x  + 2x y - x y  - 4x y  - x y  + 2x y  + x*y

o2 : R
i3 : X = coincidentRootLocus(4,2,1)

o3 = CRL(4,2,1)

o3 : Coincident root locus
i4 : projectiveTangentSpace(X,F)

             4 3     3 4       6    7   5 2     3 4     2 5       6     7 
o4 = ideal (x y  + 2x y  - 2x*y  - y , x y  - 4x y  - 2x y  + 3x*y  + 2y ,
     ------------------------------------------------------------------------
      6      3 4     2 5       6     7   7     3 4     2 5       6     7
     x y + 6x y  + 3x y  - 6x*y  - 4y , x  - 9x y  - 6x y  + 8x*y  + 6y )

o4 : Ideal of R

See also

Ways to use projectiveTangentSpace:

For the programmer

The object projectiveTangentSpace is a method function.