an ideal, generated by $n-d+i$ linearly independent binary forms of the same degree $n$, which corresponds to a random point of the $i$-th coisotropic hypersurface $CH_i(X)\subset Grass(n-d-1+i,\mathbb{P}(Sym^n(K^2)))$
Description
i1 : X = coincidentRootLocus({2,2,1},ZZ/101)
o1 = CRL(2,2,1;ZZ/101)
o1 : Coincident root locus
i2 : I = randomInCoisotropic(X,1)
3 2 2 3 4 5 4 2 3 4 5 5
o2 = ideal (t t + 42t t + 32t t - 32t , t t + 14t t + 4t t - 44t , t -
0 1 0 1 0 1 1 0 1 0 1 0 1 1 0
------------------------------------------------------------------------
2 3 4 5
40t t - 18t t - 36t )
0 1 0 1 1
ZZ
o2 : Ideal of ---[t ..t ]
101 0 1