i1 : X = coincidentRootLocus {3,1,1}
o1 = CRL(3,1,1)
o1 : Coincident root locus
|
i2 : F = generic X
3 5 3 3 2 4 3
o2 = t0 t1 t2 x + (t0 t1 t2 + t0 t1 t2 + 3t0 t0 t1 t2 )x x + (t0 t1 t2 +
0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1
------------------------------------------------------------------------
2 2 2 3 2 2
3t0 t0 t1 t2 + 3t0 t0 t1 t2 + 3t0 t0 t1 t2 )x x + (3t0 t0 t1 t2 +
0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 1
------------------------------------------------------------------------
2 2 3 2 3 2
3t0 t0 t1 t2 + 3t0 t0 t1 t2 + t0 t1 t2 )x x + (3t0 t0 t1 t2 +
0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1
------------------------------------------------------------------------
3 3 4 3 5
t0 t1 t2 + t0 t1 t2 )x x + t0 t1 t2 x
1 0 1 1 1 0 0 1 1 1 1 1
o2 : QQ[t0 ..t0 , t1 ..t1 , t2 ..t2 ][x ..x ]
0 1 0 1 0 1 0 1
|
i3 : member(F,X)
o3 = true
|
i4 : factor F
3
o4 = (t2 x + t2 x )(t1 x + t1 x )(t0 x + t0 x )
0 0 1 1 0 0 1 1 0 0 1 1
o4 : Expression of class Product
|
i5 : G = generic(X,Reduce=>true)
5 5 4 4 4 4 3 2 3 3
o5 = t x + (3t t + t t + t t )x x + (3t t + 3t t t + 3t t t +
0 0 0 1 0 2 0 3 0 1 0 1 0 1 2 0 1 3
------------------------------------------------------------------------
3 3 2 2 3 2 2 2 2 2 2 3 3
t t t )x x + (t t + 3t t t + 3t t t + 3t t t t )x x + (t t t +
0 2 3 0 1 0 1 0 1 2 0 1 3 0 1 2 3 0 1 0 1 2
------------------------------------------------------------------------
3 2 4 3 5
t t t + 3t t t t )x x + t t t x
0 1 3 0 1 2 3 0 1 1 2 3 1
o5 : QQ[t ..t ][x ..x ]
0 3 0 1
|
i6 : member(G,X)
o6 = true
|
i7 : factor G
3
o7 = (t x + t x )(t x + t x )(t x + t x )
0 0 3 1 0 0 2 1 0 0 1 1
o7 : Expression of class Product
|