next | previous | forward | backward | up | index | toc

# Complex == Complex -- whether two complexes are equal

## Synopsis

• Operator: ==
• Usage:
C == D
C == 0
• Inputs:
• C, ,
• D, ,
• Outputs:
• , that is true when C and D are equal

## Description

Two complexes are equal if the corresponding objects and corresponding maps at each index are equal.

 i1 : S = ZZ/101[a..c] o1 = S o1 : PolynomialRing i2 : C = freeResolution coker vars S 1 3 3 1 o2 = S <-- S <-- S <-- S 0 1 2 3 o2 : Complex i3 : D = C[3][-3] 1 3 3 1 o3 = S <-- S <-- S <-- S 0 1 2 3 o3 : Complex i4 : C === D o4 = false i5 : C == D o5 = true

Both the maps and the objects must be equal.

 i6 : (lo,hi) = concentration C o6 = (0, 3) o6 : Sequence i7 : E = complex for i from lo+1 to hi list 0*dd^C_i 1 3 3 1 o7 = S <-- S <-- S <-- S 0 1 2 3 o7 : Complex i8 : dd^E 1 3 o8 = 0 : S <----- S : 1 0 3 3 1 : S <----- S : 2 0 3 1 2 : S <----- S : 3 0 o8 : ComplexMap i9 : C == E o9 = false i10 : E == 0 o10 = false

A complex is equal to zero if all the objects and maps are zero. This could require computation to determine if something that is superficially not zero is in fact zero.

 i11 : f = id_C 1 1 o11 = 0 : S <--------- S : 0 | 1 | 3 3 1 : S <----------------- S : 1 {1} | 1 0 0 | {1} | 0 1 0 | {1} | 0 0 1 | 3 3 2 : S <----------------- S : 2 {2} | 1 0 0 | {2} | 0 1 0 | {2} | 0 0 1 | 1 1 3 : S <------------- S : 3 {3} | 1 | o11 : ComplexMap i12 : D = coker f o12 = cokernel | 1 | <-- cokernel {1} | 1 0 0 | <-- cokernel {2} | 1 0 0 | <-- cokernel {3} | 1 | {1} | 0 1 0 | {2} | 0 1 0 | 0 {1} | 0 0 1 | {2} | 0 0 1 | 3 1 2 o12 : Complex i13 : D == 0 o13 = true
 i14 : C0 = complex S^0 o14 = 0 0 o14 : Complex i15 : C1 = C0[4] o15 = 0 -4 o15 : Complex i16 : concentration C0 == concentration C1 o16 = false i17 : C0 == C1 o17 = true i18 : C0 == 0 o18 = true i19 : C1 == 0 o19 = true

Testing for equality is not the same testing for isomorphism. In particular, different presentations of a complex need not be equal.

 i20 : R = QQ[a..d]; i21 : f0 = matrix {{-b^2+a*c, b*c-a*d, -c^2+b*d}} o21 = | -b2+ac bc-ad -c2+bd | 1 3 o21 : Matrix R <-- R i22 : f1 = map(source f0,, {{d, c}, {c, b}, {b, a}}) o22 = {2} | d c | {2} | c b | {2} | b a | 3 2 o22 : Matrix R <-- R i23 : C = complex {f0, f1} 1 3 2 o23 = R <-- R <-- R 0 1 2 o23 : Complex i24 : HH C != complex coker f0 o24 = true i25 : prune HH C == complex coker f0 o25 = true