Macaulay2 » Documentation
Packages » Complexes :: Ext(Module,Module)
next | previous | forward | backward | up | index | toc

Ext(Module,Module) -- total Ext module

Synopsis

Description

The computation of the total Ext module is possible for modules over the ring $R$ of a complete intersection, according to the algorithm of Shamash-Eisenbud-Avramov-Buchweitz. The result is provided as a finitely presented module over a new ring with one additional variable of degree $\{-2,-d\}$ for each equation of degree $d$ defining $R$. The variables in this new ring have degree length $1$ more than the degree length of the original ring. In other words, it is multigraded with the degree $d$ part of $\operatorname{Ext}^n(M,N)$ appearing as the degree $\{-n,d\}$ part of $\operatorname{Ext}(M,N)$.

We illustrate this in the following example.

i1 : R = QQ[x,y]/(x^3,y^2);
i2 : N = cokernel matrix {{x^2, x*y}}

o2 = cokernel | x2 xy |

                            1
o2 : R-module, quotient of R
i3 : H = Ext(N,N);
i4 : ring H

o4 = QQ[X ..X , x..y]
         1   2

o4 : PolynomialRing
i5 : S = ring H;
i6 : H

o6 = cokernel {0, 0}   | y2 xy x2 0 0 0 0 0 0 0 0 X_1y X_1x 0   0   0 0 |
              {-1, -1} | 0  0  0  y x 0 0 0 0 0 0 0    0    X_1 0   0 0 |
              {-1, -1} | 0  0  0  0 0 y x 0 0 0 0 0    0    0   X_1 0 0 |
              {-1, -1} | 0  0  0  0 0 0 0 y x 0 0 0    0    0   X_1 0 0 |
              {-1, -1} | 0  0  0  0 0 0 0 0 0 y x 0    0    0   0   0 0 |
              {-2, -2} | 0  0  0  0 0 0 0 0 0 0 0 0    0    0   0   y x |

                            6
o6 : S-module, quotient of S
i7 : isHomogeneous H

o7 = true
i8 : rank source basis( { -2,-3 }, H)

o8 = 1
i9 : rank source basis( { -3 }, Ext^2(N,N) )

o9 = 1
i10 : rank source basis( { -4,-5 }, H)

o10 = 4
i11 : rank source basis( { -5 }, Ext^4(N,N) )

o11 = 4
i12 : hilbertSeries H

            -1 -1     2     -1    -2 -2     3     -1       -2 -1     -3 -3     -2     -3 -2     -2       -3 -1
      1 + 4T  T   - 3T  - 8T   + T  T   + 2T  + 4T  T  - 4T  T   - 2T  T   + 5T   + 4T  T   - 2T  T  - 2T  T
            0  1      1     0     0  1      1     0  1     0  1      0  1      0      0  1      0  1     0  1
o12 = --------------------------------------------------------------------------------------------------------
                                                -2 -2       -2 -3         2
                                          (1 - T  T  )(1 - T  T  )(1 - T )
                                                0  1        0  1        1

o12 : Expression of class Divide
i13 : hilbertSeries(H,Order=>11)

                  -1 -1    -2 -3     -2 -2     -3 -4    -4 -6     -3 -3  
o13 = 1 + 2T  + 4T  T   + T  T   + 4T  T   + 4T  T   + T  T   + 2T  T   +
            1     0  1     0  1      0  1      0  1     0  1      0  1   
      -----------------------------------------------------------------------
        -4 -5     -5 -7    -6 -9     -4 -4     -5 -6     -6 -8     -7 -10  
      4T  T   + 4T  T   + T  T   + 2T  T   + 2T  T   + 4T  T   + 4T  T    +
        0  1      0  1     0  1      0  1      0  1      0  1      0  1    
      -----------------------------------------------------------------------
       -8 -12     -5 -5     -6 -7     -7 -9     -8 -11     -9 -13    -10 -15
      T  T    + 2T  T   + 2T  T   + 2T  T   + 4T  T    + 4T  T    + T   T   
       0  1       0  1      0  1      0  1      0  1       0  1      0   1  
      -----------------------------------------------------------------------
          -6 -6     -7 -8     -8 -10     -9 -12     -10 -14     -11 -16  
      + 2T  T   + 2T  T   + 2T  T    + 2T  T    + 4T   T    + 4T   T    +
          0  1      0  1      0  1       0  1       0   1       0   1    
      -----------------------------------------------------------------------
       -12 -18     -7 -7     -8 -9     -9 -11     -10 -13     -11 -15  
      T   T    + 2T  T   + 2T  T   + 2T  T    + 2T   T    + 2T   T    +
       0   1       0  1      0  1      0  1       0   1       0   1    
      -----------------------------------------------------------------------
        -12 -17     -13 -19    -14 -21     -8 -8     -9 -10     -10 -12  
      4T   T    + 4T   T    + T   T    + 2T  T   + 2T  T    + 2T   T    +
        0   1       0   1      0   1       0  1      0  1       0   1    
      -----------------------------------------------------------------------
        -11 -14     -12 -16     -13 -18     -14 -20     -15 -22    -16 -24  
      2T   T    + 2T   T    + 2T   T    + 4T   T    + 4T   T    + T   T    +
        0   1       0   1       0   1       0   1       0   1      0   1    
      -----------------------------------------------------------------------
        -9 -9     -10 -11     -11 -13     -12 -15     -13 -17     -14 -19  
      2T  T   + 2T   T    + 2T   T    + 2T   T    + 2T   T    + 2T   T    +
        0  1      0   1       0   1       0   1       0   1       0   1    
      -----------------------------------------------------------------------
        -15 -21     -16 -23     -17 -25    -18 -27     -10 -10     -11 -12  
      2T   T    + 4T   T    + 4T   T    + T   T    + 2T   T    + 2T   T    +
        0   1       0   1       0   1      0   1       0   1       0   1    
      -----------------------------------------------------------------------
        -12 -14     -13 -16     -14 -18     -15 -20     -16 -22     -17 -24  
      2T   T    + 2T   T    + 2T   T    + 2T   T    + 2T   T    + 2T   T    +
        0   1       0   1       0   1       0   1       0   1       0   1    
      -----------------------------------------------------------------------
        -18 -26     -19 -28    -20 -30
      4T   T    + 4T   T    + T   T
        0   1       0   1      0   1

o13 : ZZ[T ..T ]
          0   1

For more information, see the chapter Resolutions and cohomology over complete intersections by Luchezar L. Avramov and Daniel R. Grayson, in the book Computatations in Algebraic Geometry with Macaulay2.

The result of the computation is cached for future reference.

See also